Journal of Organometallic Chemistry, 94 (1975) 403-408 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

PREPARATION OF ORGANOCHALCOGEN-BRIDGED DINUCLEAR COM-PLEXES OF TITANIUM OR NIOBIUM AND IRON OR COBALT

MASAO SATO^{*} and TADAO YOSHIDA

Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo (Japan)

(Received November 21st, 1974)

Summary

Organochalcogen-bridged heteronuclear complexes $(\pi - C_5H_5)_2 Ti(ER)_2 Fe(NO)_2$ (ER = SCH₃, SC₆H₅, SeCH₃, SeC₆H₅ or TeC₆H₅), $(\pi - C_5H_5)_2Nb(ER)_2Fe(NO)(CO)$ (ER = SC₆H₅, SeC₆H₅ or TeC₆H₅) and $(\pi - C_5H_5)_2Nb(ER)_2Co(CO)_2$ (ER = SC₆H₅, SeC₆H₅ or TeC₆H₅) have been prepared.

Introduction

Although heteronuclear transition metal complexes containing bridging organothio-ligands have been known for nearly five years [1-4], organochalcogen-bridged dinuclear complexes of titanium or niobium and iron or cobalt have received little attention. In continuation of a series of studies on the chemical reactivities and donor properties of chalcogen atoms in transition metal complexes containing Group VIb elements [5-8], we report here the preparation of new complexes of type $(\pi-C_5H_5)_2\text{Ti}(\text{ER})_2\text{Fe}(\text{NO})_2, (\pi-C_5H_5)_2\text{Nb}(\text{ER})_2$ -Fe(NO)(CO) and $(\pi-C_5H_5)_2\text{Nb}(\text{ER})_2\text{Co}(\text{CO})_2$ (E = S, Se or Te).

Results and discussion

 $Hg[Fe(CO)_3NO]_2$ reacted slowly at room temperature in acetone with two

ER NO 1/2 Hg Fe(CO)3NO D (I or II) $(I: M = Ti; L = NO; ER = SCH_3, SC_6H_5, SeCH_3, SeC_6H_5, TeC_6H_5)$ (II: M = Nb; L = CO; $ER = SC_6H_5$, SeC_6H_5 , TeC_6H_5)

TABLE 1

SOME PROPERTIES OF COMPOUNDS 1-111

Compound	Color	M.p. ^c	ν(NO) or ν(CO) ^d	¹ H NMR (r ppm)		
		5		C ₅ H ₅	C ₆ H ₅	CH ₃
(π-CsHs) ,2Ti(SMe),2Fe(NO)2	Violet	231-232	16728, 17158	4.44-4.84(m)		7.62(s) ^e
(r-C ₅ H ₅) ₂ Ti(SPh) ₂ Fe(NO) ₂ ^a	Violet	209-210	16709, 17058	4.71(8)	2.52-2.82(m) ^e	
(r-CsHs)2TI(SeMe)2Fe(NO)2	Blue	217-218	16708, 17155	4.61(s), 4.71(s), 4.85(s)	•	7.72(s), 7.84(s) ^e
(r-C ₅ H ₅) ₂ Ti(SePh) ₂ Fe(NO) ₂	Blue	182-183	1688s, 1706s	4.48(s), 4.58(s), 4.80(s)	2.50-2.80(m) ^f	
(π-C5H5)2Ti(TePh)2Fe(NO)2 ^b	Green	156-157	16758, 17088	4.68(8), 4.71(8), 4.83(8)	2,60-2,84(m) [/]	
(T-C5H5)2Nb(SPh)2F6(NO)(CO)	Brown	175-176	16058, 18478		•	- -
(r-C ₅ H ₅) ₂ Nb(SePh) ₂ Fe(NO)(CO)	Brown	166-157	1610s, 1845s	4.31(s), 4.58(s), 4,64(s)	2.50-2.74(m) ^g	-
L				4.78(s), 4.93(s), 5.21(s)	•	
(π-C ₅ H ₅) ₂ Nb(TePh) ₂ Fe(NO)(CO)	Brown	170-171	16238, 18458	4.64(s), 4.83(s), 4.90(s) 5.07(s), 5.26(s), 5.31(s)	2,50-2,74(m) ^g	
(#-CsHs)2Nb(SPh)2Co(CO)2	Brown	173-175	18555, 19105			
(<i>n</i> -C ₅ H ₅) ₂ Nb(SePh) ₂ Co(CO) ₂	Brown	136-138	1850s, 1909s	4,64(s), 4.98(s), 5.34(s)	2.44-2,89(m) ^g	
(π-C ₅ H ₅) ₂ Nb(TePh) ₂ Co(CO) ₂	Brown	157-160	1859s, 1911s	4.73(s), 4.99(s), 5.31(s)	2.46-2.86(m) ^g	
^a Mol. wt. found: 661 (caled.: 512) b f In (CD ₃) ₂ CO. ^E In (CD ₃) ₂ SO,	y cryoscopy in	i C ₆ H ₆ ^b Mol, wi	', found: 681 (caled.; 7	03) by cryoscopy in C ₆ H ₆ ^C	With decomposition.	^{il} KBr disc. ^e In CDOl ₃ .

404

molar equivalents of $(\pi$ -C₅H₅)₂Ti(ER)₂ to give $(\pi$ -C₅H₅)₂Ti(ER)₂Fe(NO)₂ (I). Also, the reaction of one mole of the former with two moles of $(\pi$ -C₅H₅)₂Nb-(ER)₂ yielded brown complexes, $(\pi$ -C₅H₅)₂Nb(ER)₂Fe(NO)(CO) (II). The physical properties of complexes I and II are shown in Table 1.

On the other hand, no heteronuclear complex could be obtained from the reaction of Hg[Co(CO)₄]₂, which is isoelectronic with Hg[Fe(CO)₃NO]₂, with $(\pi-C_5H_5)_2Ti(ER)_2$, but it did react in acetone with two molar equivalents of $(\pi-C_5H_5)_2Nb(ER)_2$ to give brown complexes, $(\pi-C_5H_5)_2Nb(ER)_2Co(CO)_2$ (III). The data for complexes (III) are also collected in Table 1.

$$(ER = SC_6H_5, SeC_6H_5, TeC_6H_5)$$

Qualitatively, the rate of formation of I ($R = C_6H_5$), II or III was observed to increase in the order of E = S < Se < Te. A similar trend was observed with I ($R = CH_3$). These results might be explained in terms of the nucleophilicity of E which increases in the order S < Se < Te. Hg[Fe(CO)₃NO]₂ seems to react more quickly with (π -C₅H₅)₂Ti(ECH₃)₂ (for a given E) than with (π -C₅H₅)₂Ti(EC₆H₅)₂, which corresponds with the relative rates of reaction of (π -C₅H₅)₂Ti(SR)₂ (R = CH₃, C₆H₅) with (norbornadiene)M(CO)₄ (M = Cr, Mo, W) [2].

The complexes I, II and III are stable under nitrogen, but solutions in DMSO decompose in air immediately. II and III are more stable than the parent complexes $(\pi - C_5 H_5)_2 Nb(ER)_2$, both in solution and in the solid state when exposed to air.

The IR spectra of I exhibited two strong bands due to the stretching frequencies of the nitrosyl groups in the range of 1670-1715 cm⁻¹. In the IR spectra of II and III, there was one strong band at around 1610 cm⁻¹ due to a N—O stretching vibration, another at around 1840 cm⁻¹ attributable to a C—O stretching frequency for II, and two strong C—O stretching frequencies at around 1850 and 1910 cm⁻¹ for III (see Table 1).

The NMR spectra of I, II and III are shown in Table 1, but we could not obtain those for ER = SC_6H_5 in II and III because of solubility problems, Three separate singlets due to the π -cyclopentadienyl protons for I (ER = SeCH₃, SeC₆H₅ or TeC₆H₅) and III (ER = SeC₆H₅ or TeC₆H₅) might be attributed to *cis/ trans* isomerism in solution, in which the former affords two peaks and the latter one peak [2]. Furthermore, showing two separate singlets for the methyl protons for I (ER = SeCH₃) would correspond with one peak due to the *cis* form and one attributable to the *trans* form. The π -cyclopentadienyl protons of II (ER = SeC₆H₅ or TeC₆H₅) gave six peaks at around $\tau 4.70$ ppm. This result may be understood if the complexes are present as *cis* (IIa₁, IIa₂) and *trans* (IIb) isomers in solution. IIa₁ and IIa₂ each should afford two peaks. In IIb, H(α) is in a different environment from $H(\beta)$, since the electronic effects of a nitrosyl group differ from those of a carbonyl group. Therefore, IIb would give two signals.

One singlet of the π -cyclopentadienyl protons for I (ER = SC₆H₅) might be interpreted in terms of interconversion between the *cis* and the *trans* form, or in terms of presence of the *trans* form. But we could not interpret the complexed multiplet due to the π -cyclopentadienyl protons and one singlet due to the methyl protons for I (ER = SCH₃).

Complexes II and III are diamagnetic, which suggests that the niobium is bonded to the iron or cobalt.

Experimental

All experiments were carried out in an atmosphere of dry nitrogen. Solvents were purified by conventional methods: freed from oxygen by degassing and saturating with nitrogen. The complexes $(\pi-C_5H_5)_2Ti(ER)_2$ (ER = SCH₃ [9], SC₆H₅ [10], SeCH₃, SeC₆H₅ and TeC₆H₅ [7]), $(\pi-C_5H_5)_2Nb(ER)_2$ (ER = SC₆H₅ [4], SeC₆H₅ and TeC₆H₅ [8]), Hg[Fe(CO)₃NO]₂ [11] and Hg[Co(CO)₄]₂ [12] were prepared using published procedures. IR spectra were measured by a Hitachi EPI-S2 spectrometer. NMR spectra were measured by means of a JOEL-JNM-100 NMR spectrometer.

Reaction of $(\pi - C_5 H_5)_2$ Ti(SCH₃)₂ with Hg[Fe(CO)₃NO]₂

To a solution of $(\pi$ -C₅H₅)₂Ti(SCH₃)₂ (0.27 g, 1 mmol) in acetone (30 ml) was added Hg[Fe(CO)₃NO]₂ (0.27 g, 0.5 mmol) whilst stirring. Periodic withdrawal of small samples for IR spectra showed that after 10 h of stirring Hg-[Fe(CO)₃NO]₂ no longer was present in the violet solution. The reaction mixture was filtered and solvent was removed from the filtrate under reduced pressure. The residue was recrystallized from acetone/n-hexane to give 0.08 g [21% yield based on $(\pi$ -C₅H₅)₂Ti(SCH₃)₂] of violet crystals, m.p. (dec.) 231-232°C. (Found: C, 37.49; H, 4.16; N, 7.25. C₁₂H₁₆FeN₂O₂S₂Ti calcd.: C, 37.11; H, 4.12; N, 7.22%.)

Reaction of $(\pi - C_5 H_5)_2$ Ti $(SC_6 H_5)_2$ with $Hg[Fe(CO)_3 NO]_2$

A similar reaction using $(\pi$ -C₅H₅)₂Ti(SC₆H₅)₂ (0.39 g, 1 mmol) and Hg[Fe-(CO)₃NO]₂ (0.27 g, 0.5 mmol) after 18 h gave 0.10 g (20% yield) of violet crystals, m.p. (dec.) 209-210°C. (Found: C, 51.84; H, 3.84; N, 5.41. C₂₂H₂₀FeN₂O₂-S₂Ti calcd.: C, 51.56; H, 3.91; N, 5.47%.)

Reaction of $(\pi$ -C₅H₅)₂Ti(SeCH₃)₂ with Hg[Fe(CO)₃NO]₂

A similar reaction using $(\pi - C_5H_5)_2$ Ti(SeCH₃)₂ (0.37 g, 1 mmol) and Hg[Fe-(CO)₃NO]₂ (0.27 g, 0.5 mmol) after 4 h gave 0.10 g (22% yield) of blue crystals, m.p. (dec.) 217-218°C. (Found: C, 29.82; H, 3.67; N, 5.95. $C_{12}H_{16}FeN_2O_2Se_2Ti$ calcd.: C, 29.88; H, 3.32; N, 5.81%.)

Reaction of $(\pi - C_5 H_5)_2$ Ti $(SeC_6 H_5)_2$ with $Hg[Fe(CO)_3 NO]_2$

A similar reaction using $(\pi - C_5H_5)_2$ Ti(SeC₆H₅)₂ (0.49 g, 1 mmol) and Hg[Fe-(CO)₃NO]₂ (0.27 g, 0.5 mmol) after 15 h gave 0.12 g (20% yield) of blue crystals, m.p. (dec.) 182-183°C. (Found: C, 43.95; H, 3.32; N, 4.74. C₂₂H₂₀FeN₂O₂-Se₂Ti calcd.: C, 43.57; H, 3.30; N, 4.63%.)

Reaction of $(\pi - C_5 H_5)_2 Ti(TeC_6 H_5)_2$ with $Hg[Fe(CO)_3 NO]_2$

A similar reaction using $(\pi - C_5H_5)_2$ Ti(TeC₆H₅)₂ (0.59 g, 1 mmol) and Hg-[Fe(CO)₃NO]₂ (0.27 g, 0.5 mmol) after 2 h gave 0.17 g (24% yield) of green crystals, m.p. (dec.) 156-157°C. (Found: C, 37.16; H. 3.01; N, 3.68. C₂₂H₂₀Fe-N₂O₂Te₂Ti calcd.: C, 37.55; H, 2.84; N, 3.98%.)

Reaction of $(\pi - C_5H_5)_2Nb(SC_6H_5)_2$ with $Hg[Fe(CO)_3NO]_2$

 $(\pi$ -C₅H₅)₂Nb(SC₆H₅)₂ (0.44 g, 1 mmol) and Hg[Fe(CO)₃NO]₂ (0.27 g, 0.5 mmol) were refluxed in acetone (100 ml) for 2 h. The original red color of the starting materials changed gradually to brown and a gray precipitate separated. The reaction mixture was filtered and solvent was removed from the filtrate under reduced pressure to leave a brown solid. The solid was washed with benzene and ether, and dried under vacuum to give 0.41 g [75% yield based on $(\pi$ -C₅H₅)₂Nb(SC₆H₅)₂] of a brown solid, m.p. (dec.) 175-176°C. (Found: C, 49.94; H, 3.57; N, 2.57. C₂₃H₂₀FeNNbO₂S₂ calcd.: C, 49.73; H, 3.60; N, 2.52%.)

Reaction of $(\pi - C_5 H_5)_2 Nb(SeC_6 H_5)_2$ with $Hg[Fe(CO)_3 NO]_2$

 $(\pi$ -C₅H₅)₂Nb(SeC₆H₅)₂ (0.54 g, 1 mmol) and Hg[Fe(CO)₃NO]₂ (0.27 g, 0.5 mmol) were refluxed in acetone (100 ml) for 1 h. The solution turned from red to brown and a gray precipitate separated. The reaction mixture was filtered and the filtrate was evaporated to dryness. The residue was recrystallized from DMSO/ diethyl ether to give 0.45 g (70% yield) of brown crystals, m.p. (dec.) 156-157°C. (Found: C, 42.14; H, 2.86; N, 2.18. C₂₃H₂₀FeNNbO₂Se₂ calcd.: C, 42.52; H, 3.08; N, 2.16%.)

Reaction of $(\pi - C_5 H_5)_2 Nb(TeC_6 H_5)_2$ with $Hg[Fe(CO)_3 NO]_2$

To a solution of $(\pi$ -C₅H₅)₂Nb(TeC₆H₅)₂ (0.63 g, 1 mmol) in acetone (50 ml) was added dropwise a solution of Hg[Fe(CO)₃NO]₂ (0.27 g, 0.5 mmol) in acetone (50 ml). After 1 h of stirring at room temperature, the solution turned from green to brown and a gray precipitate separated. The reaction mixture was filtered and the filtrate was evaporated to dryness. The residue was recrystallized from DMSO/diethyl ether to give 0.60 g (80% yield) of brown crystals, m.p. (dec.) 170-171°C. (Found: C, 36.73; H, 2.51; N, 2.00. C₂₃H₂₀FeNNbO₂Te₂ calcd.: C, 37.00; H, 2.68; N, 1.87%.)

Reaction of $(\pi - C_5 H_5)_2 Nb(SC_6 H_5)_2$ with $Hg[Co(CO)_4]_2$ $(\pi - C_5 H_5)_2 Nb(SC_6 H_5)_2$ (0.44 g, 1 mmol) and $Hg[Co(CO)_4]_2$ (0.27 g, 0.5 mmol)

were refluxed in acetone (100 ml) for 2 h. The original red color of the starting materials turned gradually to brown and a gray precipitate separated. The reaction mixture was filtered and solvent was removed from the filtrate under reduced pressure to leave a brown solid. The solid was washed with benzene and ether, and dried under vacuum to give 0.39 g [70% yield based on $(\pi$ -C₅H₅)₂Nb(SC₆H₅)₂] of brown solid, m.p. (dec.) 173-175°C. (Found: C, 52.29; H, 3.82; S, 11.55. C₂₄H₂₀CoNbO₂S₂ calcd.: C, 51.80; H, 3.60; S, 11.51%.)

Reaction of $(\pi - C_5 H_5)_2 Nb(SeC_6 H_5)_2$ with $Hg[Co(CO)_4]_2$

 $(\pi$ -C₅H₅)₂Nb(SeC₆H₅)₂ (0.54 g, 1 mmol) and Hg[Co(CO)₄]₂ (0.27 g, 0.5 mmol) in acetone (100 ml) were stirred for 15 h at room temperature. The solution turned gradually from red to brown and a gray precipitate separated. The reaction mixture was filtered and solvent was removed from the filtrate under reduced pressure. The residue was recrystallized from DMSO/diethyl ether to give 0.48 g (74% yield) of brown crystals, m.p. (dec.) 136-138°C. (Found: C, 44.09; H, 3.18. C₂₄H₂₀CoNbO₂Se₂ calcd.: C, 44.30; H, 3;08%.)

Reaction of $(\pi - C_5 H_5)_2 Nb(TeC_6 H_5)_2$ with $Hg[Co(CO)_4]_2$

A similar reaction using $(\pi$ -C₅H₅)₂Nb(TeC₆H₅)₂ (0.63 g, 1 mmol) and Hg-[Co(CO)₄]₂ (0.27 g, 0.5 mmol) for 2 h gave 0.67 g (90% yield) of brown crystals, m.p. (dec.) 157-160°C. (Found: C, 38.40; H, 2.68. C₂₄H₂₀CoNbO₂Te₂ calcd.: C, 38.59; H, 2.76%.)

References

- 1 H. Köpf and K.H. Räthlein, Angew. Chem. Int. Ed. (Engl.), 8 (1969) 980.
- 2 P.S. Braterman, V.A. Wilson and K.K. Joshi, J. Chem. Soc. A, (1971) 191.
- 3 A.R. Dias and M.L.H. Green, J. Chem. Soc. A. (1971) 1951.
- 4 W.E. Douglas and M.L.H. Green, J. Chem. Soc., Dalton Trans., (1972) 1796.
- 5 M. Sato and T. Yoshida, J. Organometal. Chem., 39 (1972) 389.
- 6 M. Sato and T. Yoshida, J. Organometal. Chem., 51 (1973) 231.
- 7 M. Sato and T. Yoshida, J. Organometal. Chem., 67 (1974) 395.
- 8 M. Sato and T. Yoshida, J. Organometal. Chem., 87 (1975) 217.
- 9 S.A. Giddings, Inorg. Chem., 6 (1967) 849.
- 10 H. Köpf and M. Schmidt, Z. Anorg. Allg. Chem., 340 (1965) 139.
- 11 W. Hieber and H. Beuter, Z. Anorg. Allg. Chem., 320 (1963) 101.
- 12 W. Hieber, E.O. Fischer and E. Bockly, Z. Anorg. Allg. Chem., 269 (1952) 308.